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The Green function for potential flow in a rectangular channel 

J .N.  N E W M A N  
Department of  Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

Abstract. The evaluation of the Green function is considered for the three-dimensional Laplace equation, in the 
interior of a rectangular channel subject to homogeneous Neumann conditions on the boundaries. To complement 
the Fourier eigenfunction expansion which is effective in the far-field, a near-field algorithm is developed based on 
the simpler Green function for a channel of infinite width, using images to account for the channel sides. Examples 
are given of numerical applications including the added mass of a sphere in a square channel, and the interaction 
force between a ship and an adjacent canal wall. 

I.  Introduct ion  

Three-dimensional  potential  flows inside rectangular channels are of  interest in various 
applications. These include wall corrections in water- and wind-tunnels, and problems 

associated with ships moving in canals. In the latter case, if the Froude number  is sufficiently 
small, wave effects are negligible and the free-surface condition can be replaced by a 
homogeneous  Neumann  boundary  condition. In applications where Dirichlet boundary  
conditions are applicable the corresponding Green  functions can be derived by superposit ion 
of appropr ia te  pairs of the functions considered here,  with opposite signs. 

The  Green  function for a rectangular channel can be constructed simply f rom the 
free-space singularity 1 / r  and a doubly-periodic array of images. This representat ion is useful 
conceptually,  but the very slow convergence of the doubly-infinite series makes  it unsuitable 
for routine computat ions.  Alternat ive representat ions have been derived by Breit  [1]. One,  
reproduced  below as equat ion (7), is an eigenfunction expansion involving tr igonometric 
functions of  the coordinates transverse to the channel axis, and exponential  functions of  the 
axial coordinate.  This expansion is simple and effective if the axial distance between the 
source and field points is modera te  or large compared  to the larger of the two transverse 
dimensions of  the channel,  the width w or height h. To complement  this representat ion Breit  
derives an elegant Taylor  series expansion of the images about  the source point. Since the 
radius of  convergence is limited by the distance to the nearest  image,  one expects this series 
to be useful computat ional ly  in a spherical domain with radius of the order  of the smal ler  

dimension of the channel. Thus for channels where h and w are substantially different,  the 
two complemen ta ry  expansions given in [1] do not suffice. 

A simpler analysis applies in the limits w/h---~ ~ or w/h---~O, which are fundamental ly  
identical except for scaling and definition of the coordinates.  For definiteness we consider the 
fo rmer  case, corresponding to the domain between two parallel horizontal planes which are 
unbounded.  The Green  function can be constructed f rom a single periodic array of images,  
si tuated on the vertical axis above and below the source point. The potential  is axisymmetric 
about  this axis. The  eigenfunction expansion involves tr igonometric functions of the axial 
coordinate ,  and modified Hankel  functions K 0 in the radial coordinate R. This expansion is 
efficient for large or modera te  values of R, relative to the height h between the two 
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boundaries. For smaller values of R / h  a Taylor series has been derived by Breit [1], and 
Newman [2] has developed Chebyshev expansions and economized polynomials. The latter 
representation permits computation of the singly-periodic Green function with single- 
precision accuracy for R < h with only 21 polynomial coefficients. In the complementary 
domain R > h the eigenfunction expansion requires only six terms for single-precision 
accuracy, and thus the computation of the singly-periodic Green function is effectively 
achieved by these two complementary algorithms. An important feature of this Green 
function is its logarithmic behaviour for R ~> h, a consequence of the fact that at large radial 
distances the array is equivalent asymptotically to a two-dimensional line source. 

In the present work the Green function for an arbitrary rectangular channel is constructed 
by periodic superposition of the simpler infinite-width Green functions, along the transverse 
axis normal to the channel sides. In its original form this representation is slowly convergent, 
due to the logarithmic component noted above, but this can be summed separately with a 
closed-form potential equivalent to an array of two-dimensional sources. The remainder, 
associated with the modified Bessel functions in the eigenfunction expansion, converges 
exponentially. Examples are given of computations based on this approach including the 
added mass of a sphere in a square channel, and the analysis of the bank-interaction force 
for a ship moving in a canal. 

2. Analysis 

A rectangular channel of width w and height h is considered, with unbounded length. 
Without loss of generality it can be assumed that w >I h. Nondimensional coordinates are 
defined in terms of the height h, which is assumed hereafter to be equal to one. Thus the 
interior of the channel is the three-dimensional space ( - ~  < x < ~, 0 < y < w, 0 < z < 1), 
where w >/1. The desired Green function G(x - ~, y, ~1, z, ~) is the potential of a source, 
situated at the point £, "0, ~ inside the channel and subject to homogeneous Neumann 
boundary conditions on these boundaries. The governing equation is 

V2(G-  l / r )  = 0,  (1) 

where 1/r = [ ( x -  ~ ) 2  q._ (y _ T])2 --b (Z  - -  ~-)2] 1/2 is the free-space Green function in the 
absence of the channel boundaries. The boundary conditions take the form 

O G / a y = O ,  o n y = O , w ,  (2) 

O G / O z = O ,  o n z = O ,  1. (3) 

Any linear function of x with constant coefficients is a homogeneous solution of (1-3), 
corresponding physically to a uniform streaming flow through the channel. To eliminate such 
a component it is appropriate to impose the far-field condition 

G = UIx I + o(1),  for Ixl--~o¢. (4) 

This states that the flux from the source is equally divided between -+~, with limiting 
velocities - U .  Since the singularity 1/r corresponds to a source with a flux -47r, the 
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constant U = -2¢r /w is specified by continuity. (The singularity corresponds more precisely 
to a sink, but the more general term source is retained here with the understanding that its 
strength is negative.) The far-field condition (4) also fixes the value of the arbitrary constant 
in the solution of (1-3).  

A formal solution can be constructed by superposition of four simpler functions, 

G ( x -  ~, y,77, z, ~) = G o ( x -  ~, y -  n, z -  ~) + G o ( x -  ~, y + n, z -  ~) 

+ G o ( x -  ~, Y - n ,  z +  ~)+ G o ( x -  ~, y + n , z +  ~) ,  (5) 

where G0(x, y, z) is defined by (1-4) with the source point at the origin (~ = 0, 7/= 0, 
~" = 0). The function Go corresponds to a doubly-periodic array of free-space Green 
functions, situated at the points x = 0, y = 2mw, z = 2n, where the integers m, n take all 
positive and negative values as well as zero. The solution of (1-4) can thus be constructed 
from (5) with a basic potential of the form 

G o = l + -  
r m = - m  n = - ~  

I m l + l n l > 0  

{Ix 2 + ( y  + 2mw)  2 + (z + 2n)2] -1/2 - [ (2mw) 2 + (2n)2] - ' /2} + C .  

(6) 

Here the extra inverse square-root is a constant, subtracted from each term to secure 
convergence. The additional constant C is required to satisfy (4). (In [1] the unknown 
constant is included in (4), instead of (6). Since we do not use (6) directly in our analysis the 
present convention is more convenient.) 

The series (6) is unsuitable for numerical applications, due to its very slow convergence. A 
more useful computational form can be derived by Fourier techniques, as in [1], with the 
result 

7rlXt ~ ~ k COS UmyCOSOnZ-~lxl 
= - - - -  EmEn 2 x l / 2  e , (7) Go 2w +~ww =0 ,=0 (u 2 + v . )  

m + n > O  

where 

%=1, era=2 for m ~ > l ,  

Urn = m~r/w , V, = n~r . 

Note that the far-field condition (4) is satisfied without introducing an additional constant. 
This expansion is simple to evaluate and rapidly convergent, provided Ix] I> O(w). 

As the basis for effective numerical algorithms in the complementary domain ]x] ~< O(w),  
we consider a single periodic array, equivalent to the contribution with m = 0 in (6) except 
for a constant, and defined by the series expansion 

1} 
g ( R , z ) = [ R Z  + zZ]-l/2 + y - l o g 4 + , _  ~ [(RZ + ( z  + 2n)2] -~/2 21nl . (8) 

n ~ O  

Here R = ( x  2 -~- y2)1/2 is the radial distance from the array axis, and 7 = 0 . 5 7 7 . . .  is Euler's 
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constant. Equation (8) defines a periodic function of z, which can be expanded in a Fourier 
series, as in Gradshteyn & Ryzhik [3, §8.526]. The resulting expression is 

g(R, z) = - l og  R + 2 ~'~ cos(n~rz)Ko(n~rR ) , (9) 
n = l  

where K 0 is the modified Hankel function. Since K o is exponentially small for large values of 
its argument the series in (9) converges rapidly if R/> O(1). For large values of R 

g(R, z) = - log  R + O(R -~/2 e-~R) . (10) 

The first term in (9) is a two-dimensional source; the asymptotic approximation (10) is 
equivalent to the statement that the array of three-dimensional point sources appears in its 
far field as a simple line source with the same total flux. 

Returning now to the case of the doubly-periodic array (6), our plan is to construct this 
function by summation of the single array g and its images. Except for the term log R, the 
asymptotic approximation (10) confirms the convergence of such a procedure. We therefore 
consider the modified series 

oo 

Go(x, y, z) = G2D(X, y) + ~ [g(Rm, z) + log Rm] , (11) 

where R,, = [x 2 + (y - 2mw)2] 1/2, and 

G2o(x, y ) = - l o g  - '  ~ oolog=_ 
m e : 0  

= - R e l o g 2 s i n h  ~-(x+iy) _ 1 ( ~x 2w 21°g 2cosh--w - 2  cos ~ ) .  (12) 

The function G2o is the potential of a two-dimensional periodic array of sources. Except for 
a constant, the evaluation of the series in (12) can be confirmed by differentiation with 
respect to the complex variable (x + iy). The constant is evaluated by considering the limit of 
(12) for x + iy---~0. Finally, from the last expression in (12), it follows for large Ixl that 

 lxl 
G2o - 2 ~  + O(e-~lxl/w) " (13) 

Since each term in the infinite series of (11) is exponentially small, in accordance with (10), 
it follows that the asymptotic approximation (13) also applies to Go, confirming the far-field 
form of the latter function and the constants in (11) and (12). 

The validity of (11) can be confirmed directly. The function GaD satisfies the boundary 
conditions (2), and each term satisfies (3). The boundary conditions (2) are satisfied by the 
sum in (11) as a result of periodicity and symmetry. Since the logarithmic singularities in the 
first and last terms cancel, the only remaining singularity within the channel domain is the 
contribution from the first term on the right-hand-side of (8), in the term m = 0 of (11), 
which is precisely the three-dimensional source singularity 1/r associated with the Green 
function. Thus all of the prescribed conditions (1-4) are satisfied by (11). 
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3. N u m e r i c a l  procedure  

Three  algorithms are effective collectively in the evaluation of the Green  function G. The 
simplest,  based on (7), is s traightforward to implement .  A max imum of eight terms in each 
series is sufficient to give 6D accuracy in the domain Ixl/w > 0.6. In the complementa ry  
domain  the series (11) can be utilized, with the single array g evaluated in the manner  to be 

described below. 
For  arbi trary points within the domain of the channel, the radius R m to the mth  image in 

(11) is greater  than or equal to the lower bound 2lmlw - 1. For large values of Iml the terms 
in (11) are exponential ly small, in proport ion to the factors e x p ( - 2 z r l m l w  ). Since w/> 1 the 
series in (11) can be summed numerically with rapid convergence.  Eight terms ( - 3  ~< m ~< 4) 
are required for 6D accuracy. With the exception of the term m = 0, R m >i W >i 1, and the 

summands  in (11) can be evaluated effectively from (9). 
A complemen ta ry  algorithm can be employed to evaluate the te rm m = 0 if R o < 1, based 

on the two-dimensional  Chebyshev expansions and economized polynomials  presented in [2], 

with the result 

g(R, z )  = [R 2 + z2] - ' /2  + [R 2 + ( z  + 2)2] -1/2 + [R 2 + ( z  - 2)z] - ' / z  q- E amn l~n2mz2"" (14)  
m . n  

Using the coefficients in Table  1, this economized polynomial  approximat ion is accurate in 
(0 ~< R ~< 1, 0 ~< z ~< 1), to about  8 decimals. (Except  for the constant a00, the entries in Table  
1 are identical to Table  2 of  [2].) 

When  R 0 < l  it is advisable to cancel the term log R 0 in the series (11) with the 
corresponding singular te rm of (12). Note  that G2D + log R 0 is a regular function of (x, y) in 
0 ~< y ~< w, but care is required to evaluate this sum robustly when both x and y tend to zero. 

When  one or more  of the square-root  singularities in (14) is large, it is advisable to 
subtract  these terms f rom G and evaluate their contributions in the usual manner  of  treating 
the free-space Green  function in a boundary  integral equation. 

4. Appl icat ions  

The Green  function described in the preceding sections has been combined with a three- 
dimensional  panel  code based on Green ' s  theorem.  This code, a derivative of the free- 
surface radiat ion/diffract ion p rogram WAMIT,  assumes fiat quadrilateral  panels and con- 
stant values of  the unknown potential ,  or source strength, on each panel.  An iterative solver 
is used for the linear system to permit  relatively large numbers  of panels,  and corresponding 

Table 1. Coefficients a,,, in the economized polynomial approximation (14) 

n m = 0  m = l  m=2  m=3  m = 4  

0 - 1.80907870 - 0.02525711 0.00086546 - 0.00004063 0.00000193 
1 0.05051418 - 0.00692380 0.00073292 - 0.00006636 0.00000398 
2 0.00230838 - 0.00097875 0.00020597 - 0.00003333 0.00000524 
3 0.00012934 - 0.00010879 0.00003965 - 0.00000891 
4 0.00000913 - 0.00001270 0.00000466 
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unknowns,  on the body surface. Two simple applications are described here to illustrate the 
utility of the channel Green  function. More complicated applications are described in [4], 
involving the interactions between two ships where one is moving past the other  in a canal. 

In the first application we consider the added mass of a sphere, of diameter D, centered in 
a square channel of width w and height h = w. The added-mass coefficients are defined by 
the integrals 

a, = o J" f 4,jn, dS . (15) 

Here  p is the fluid density, thi is the velocity potential for motion of the body in the direction 
j with unit velocity, and n i is the component  of the unit normal vector in the direction i. 
(Rotat ional  modes and moments  can be considered by straightforward extensions of these 
definitions.) The integral in (15) is over the body surface. Due to the spherical geometry of 
the body,  with its center on the axis of the channel, all , a22 and a33 are the only non-zero 
elements of the matrix aij. Since the channel is square, a22 = a33. In an unbounded fluid, 
corresponding to the limit D / w  = 0, these coefficients are equal to one-half of the displaced 
fluid volume. In the presence of the channel walls all and a22 = a33 have different values 
which depend on D / w .  

To test for convergence three discretizations of the sphere are used, with a total of 
N = 128,512, 2048 panels. (In the computations one plane of symmetry is imposed, reducing 
the total number  of unknowns to half of these numbers. Two or three planes of symmetry 
could be utilized with additional programming effort.) Computations have been performed 
with D / w  = 0(.05)1.0 for each of the three discretizations. In the limit D / w  = 0 only the 1 / r  
free-space Green  function is considered. The complementary limit D / w  = 1 is non-physical, 
corresponding to the case where the sphere is tangent to the channel boundaries. 

The results are listed in abbreviated form in Table 2, which also includes extrapolated 
values for N = ~ based on Richardson extrapolation. The effectiveness of this extrapolation 
is confirmed by noting that in all cases, including the singular limit D / w  = 1, the results of 
the first and second extrapolants agree to three or more significant figures. The extrapolated 

Table 2. Added-mass  coefficients all (upper table) and a2z (lower table) for a sphere of diameter  D, centered in a 
square  channel  of  width w 

D/w N = 128 N = 512 N = 2048 N = ~ N = 

0.0 0.47968 0.49492 0.49874 0.50001 0.50001 
0.2 0.48583 0.50157 0.50554 0.50686 0.50687 
0.4 0.53041 0.54973 0.55466 0.56630 0.55631 
0.6 0.66681 0.69802 0.70604 0.70871 0.70873 
0.8 1.02544 1.09381 1.11177 1.11775 1.11783 
1.0 2.34813 2.65608 2.74970 2.78091 2.78239 

0.0 0.49018 0.49775 0.49947 0.50004 0.50002 
0.2 0.49431 0.50218 0.50401 0.50462 0.50461 
0.4 0.52403 0.53403 0.53637 0.53714 0.53713 
0.6 0.61135 0.62785 0.63193 0.63330 0.63329 
0.8 0.81811 0.85229 0.86100 0.86391 0.86392 
1.0 1.39278 1.52964 1.57288 1.58730 1.58810 

N denotes  the total number  of  panels used to represent  the sphere.  The last two columns are based on Richardson 
extrapolat ion of the entries in the preceding two and three columns,  respectively. All coefficients are normalized by 
the  displaced mass  of fluid, ~pD3/6. 
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Fig. I. A d d e d  mass o f  a s p h e r e ,  o f  d i a m e t e r  D ,  in  a s q u a r e  c h a n n e l  o f  w i d t h  w ,  n o r m a l i z e d  b y  t h e  mass  o f  f l u i d  

displaced by the sphere. The solid curve represents the longitudinal added mass, for accelaration along the channel 
axis, and the dashed curve is for transverse acceleration, normal to one of the channel sides. 

values are plotted in Fig. 1, as ratios of the added-mass coefficients in an unbounded fluid. 
The effect of the channel is to increase the added mass, particularly the longitudinal 
coefficient al~, but the increase is small for D / w  <~ 0.5. 

As  a more practical example,  a ship hull is considered to move with constant velocity 
along rectangular canal and the same panel program is used to calculate the 'bank suction 
force' which acts in the transverse direction, forcing the ship toward the nearest side of the 
canal. The free surface is considered to be rigid and represented by a simple image, as is 
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Fig. 2. T r a n s v e r s e  ' b a n k - s u c t i o n '  f o r c e  o n  a s h i p  i n  s t e a d y  t r a n s l a t i o n  a l o n g  a r e c t a n g u l a r  c a n a l ,  as a f u n c t i o n  o f  i ts  

transverse position y away from the canal centerline. The force is normalized by ½pU2L 2 where p is the fluid 
density, U is the ship's velocity and L its length. The transverse position y is normalized by the half-width of  the 
canal. 
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appropriate when the Froude number is small. The ship considered is a 'Mariner' hull form, 
represented by a total of 400 panels. We take the ship length to be one, giving a normalized 
draft of 0.057 and a half-beam of 0.073. The canal is assumed to have a unit width and a 
depth of 0.068. Figure 2 shows the resulting computed values of the transverse force 
coefficient, as a function of lateral position in the canal. The force vanishes when the ship is 
on the centerline, from symmetry, and increases rapidly as the ship moves toward one side of 
the canal. 

5. Discussion 

The Green function for Laplace's equation in the domain interior to a rectangular channel, 
of infinite length and constant width and height, can be represented directly in terms of the 
doubly-periodic array of free-space Green functions 1/r, as in (6). In the limiting case where 
the width (or alternatively the height) is infinite, the problem reduces to that of a single 
source between two parallel infinite planes, or equivalently to the singly-periodic array (8). 
In their direct representations (6) and (8), neither the doubly-periodic or singly-periodic 
arrays are sufficiently convergent to permit effective numerical evaluation. 

The principal result of the present analysis is the representation (11) for the potential of 
the doubly-periodic array, in terms of a sum of the simpler singly-periodic array and its 
images. The practical value of this construction results from the analytic simplicity of the 
singly-periodic array. Most significantly, the logarithmic behavior of the singly-periodic array 
can be analysed separately and summed over the image system in closed form, corresponding 
in effect to a two-dimensional far-field solution in planes normal to the array axis. After 
subtracting this two-dimensional part, the remaining components of the image system are 
exponentially convergent, and can be summed directly. Another advantage of the construc- 
tion in terms of the singly-periodic array is the fact that it is amenable to efficient 
computation, using complementary algorithms such as the eigenfunction expansion (9) and 
economized polynomial approximation (14). 

This procedure has been tested extensively in applications to problems of ship hydro- 
dynamics in rectangular canals, using discretized boundary integral equations to solve for the 
velocity potential. The computational domain can be reduced to the submerged surface of 
the ship(s) if a Green function is used which satisfies the appropriate boundary conditions on 
the canal walls and bottom (and on the free surface, which is simplified in this context to a 
rigid fiat boundary). This is in fact the motivation for the present work. In a typical 
application involving the interactions between two ships, each discretized with 400 panels, a 
linear system of dimension 800 must be set up and solved. The set-up requires the evaluation 
of the Green function and its gradient, for each of the (800) 2 combinations of the source and 
field point, corresponding to each element of the coefficient matrix in the linear system. 
These computations must be repeated for a sequence of different relative positions of the 
two ships, to fully describe their interactions as a function of time if one ship is passing the 
other. The total number of Green function evaluations is in excess of 107 in this case, and 
efficiency is clearly important. Further details of this application are presented in a separate 
paper [4]. 

In applications where Dirichlet boundary conditions are applicable the corresponding 
Green functions can be derived by superposition of appropriate pairs of the functions 
considered here, with opposite signs. Alternatively, the singly-periodic array with one 
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Neumann and one Dirichlet boundary condition can be evaluated from the corresponding 
results in [2]. (In this context a correction is required in equation (7) of [2], replacing the 
plus sign before the last term by +--.) 
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